Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Br J Pharmacol ; 181(9): 1345-1360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424747

RESUMO

Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic. The practical outcome of this is a difficulty in predicting the therapeutic value of biased signalling due to the failure of translation of identified biased signalling to in vivo agonism. This is discussed in this review as well as some new ways forward to improve this translation process and better exploit this powerful pharmacologic mechanism.


Assuntos
Transdução de Sinais , Ligantes
2.
J Pharmacol Exp Ther ; 388(1): 110-120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918859

RESUMO

With the advent of functional screening, more allosteric molecules are being discovered and developed as possible therapeutic entities. Allosteric proteins are unique because of two specific properties: 1) separate binding sites for allosteric modulators and guests and 2) mandatory alteration of receptor conformation upon binding of allosteric modulators. For G protein-coupled receptors, these properties produce many beneficial effects on pharmacologic systems that are described here. Allosteric discovery campaigns also bring with them added considerations that must be addressed for the endeavor to be successful, and these are described herein as well. SIGNIFICANCE STATEMENT: Recent years have seen the increasing presence of allosteric molecules as possible therapeutic drug candidates. The scientific procedures to characterize these are unique and require special techniques, so it is imperative that scientists understand the new concepts involved in allosteric function. This review examines the reasons why allosteric molecules should be considered as new drug entities and the techniques required to optimize the discovery process for allosteric molecules.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Sítio Alostérico , Regulação Alostérica , Descoberta de Drogas/métodos , Sítios de Ligação , Ligantes
3.
Biochemistry ; 62(7): 1233-1248, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36917754

RESUMO

The NTSR1 neurotensin receptor (NTSR1) is a G protein-coupled receptor (GPCR) found in the brain and peripheral tissues with neurotensin (NTS) being its endogenous peptide ligand. In the brain, NTS modulates dopamine neuronal activity, induces opioid-independent analgesia, and regulates food intake. Recent studies indicate that biasing NTSR1 toward ß-arrestin signaling can attenuate the actions of psychostimulants and other drugs of abuse. Here, we provide the cryoEM structures of NTSR1 ternary complexes with heterotrimeric Gq and GoA with and without the brain-penetrant small-molecule SBI-553. In functional studies, we discovered that SBI-553 displays complex allosteric actions exemplified by negative allosteric modulation for G proteins that are Gα subunit selective and positive allosteric modulation and agonism for ß-arrestin translocation at NTSR1. Detailed structural analysis of the allosteric binding site illuminated the structural determinants for biased allosteric modulation of SBI-553 on NTSR1.


Assuntos
Neurotensina , Receptores de Neurotensina , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Neurotensina/metabolismo , Transdução de Sinais , Peptídeos/metabolismo , beta-Arrestinas/metabolismo
4.
Nat Commun ; 14(1): 1692, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973264

RESUMO

The hydroxycarboxylic acid receptor 2 (HCA2) agonist niacin has been used as treatment for dyslipidemia for several decades albeit with skin flushing as a common side-effect in treated individuals. Extensive efforts have been made to identify HCA2 targeting lipid lowering agents with fewer adverse effects, despite little being known about the molecular basis of HCA2 mediated signalling. Here, we report the cryo-electron microscopy structure of the HCA2-Gi signalling complex with the potent agonist MK-6892, along with crystal structures of HCA2 in inactive state. These structures, together with comprehensive pharmacological analysis, reveal the ligand binding mode and activation and signalling mechanisms of HCA2. This study elucidates the structural determinants essential for HCA2 mediated signalling and provides insights into ligand discovery for HCA2 and related receptors.


Assuntos
Niacina , Humanos , Niacina/farmacologia , Ligantes , Microscopia Crioeletrônica , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo
5.
Br J Pharmacol ; 179(14): 3651-3674, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106752

RESUMO

GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signalling' paradigm requires that we now characterize physiological signalling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signalling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Descoberta de Drogas , Ligantes , Reprodutibilidade dos Testes
6.
J Med Chem ; 65(1): 257-270, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34929081

RESUMO

We have shown that CB1 receptor negative allosteric modulators (NAMs) attenuated the reinstatement of cocaine-seeking behaviors in rats. In an effort to further define the structure-activity relationships and assess the druglike properties of the 3-(4-chlorophenyl)-1-(phenethyl)urea-based CB1 NAMs that we recently reported, we introduced substituents of different electronic properties and sizes to the phenethyl group and evaluated their potency in CB1 calcium mobilization, cAMP, and GTPγS assays. We found that 3-position substitutions such as Cl, F, and Me afforded enhanced CB1 potency, whereas 4-position analogues were generally less potent. The 3-chloro analogue (31, RTICBM-189) showed no activity at >50 protein targets and excellent brain permeation but relatively low metabolic stability in rat liver microsomes. Pharmacokinetic studies in rats confirmed the excellent brain exposure of 31 with a brain/plasma ratio Kp of 2.0. Importantly, intraperitoneal administration of 31 significantly and selectively attenuated the reinstatement of the cocaine-seeking behavior in rats without affecting locomotion.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína/toxicidade , Comportamento de Procura de Droga/efeitos dos fármacos , Compostos de Fenilureia/química , Receptor CB1 de Canabinoide/metabolismo , Regulação Alostérica , Animais , Encéfalo/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/etiologia , Transtornos Relacionados ao Uso de Cocaína/patologia , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Vasoconstritores/toxicidade
7.
Cell Signal ; 79: 109844, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242565

RESUMO

Signaling 'bias' is a phenomenon whereby the natural allosteric probe dependence of seven transmembrane receptors allows different receptor conformations (stabilized by different agonists) to activate some signaling pathways (coupled to pleiotropically coupled receptors) more than others at the expense of those other pathways. There are a number of relevant scenarios where such an activity could be therapeutically beneficial therefore there are practical reasons why this property of receptors should be exploited. This paper discusses recent ideas around attempts to harness this potentially useful idea and also the limitations around the current methods available to do so. Specifically, the determination of a quantitative value for the receptor bias of a given agonist that may translate to useful in vivo has been particularly elusive and studies need to be directed to solving this problem.


Assuntos
Modelos Biológicos , Transdução de Sinais , Regulação Alostérica , Animais , Humanos
8.
Adv Pharmacol ; 88: 59-82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32416872

RESUMO

Humans perceive sweet taste via activation of a specific taste receptor expressed at the surface of taste receptor cells located on the tongue and soft palate papillae. The sweet taste receptor functions as an obligate heterodimer, comprising two different class C GPCR subunits. This receptor is unique in that it is activated or modulated by a plethora of ligands from highly diverse chemical classes, from small molecules to peptides and proteins and interacting with topologically distinct sites on each of its subunits. Modulators acting at separate functional domains of the sweet taste receptor can behave as full agonists. However, contrary to observations made with other class C GPCRs such as the metabotropic glutamate receptors and the γ-aminobutyric acid type B receptor (GABAB) receptor, modulators interacting within the allosteric sites in the transmembrane domains of the sweet taste receptor only exert a relatively small effect on the affinity and efficacy of the agonist interacting at the orthosteric binding site located within the Venus fly trap domain (VFD). Newly identified potent and efficacious positive allosteric modulators (PAM)s of the sweet taste receptor rather interact at a site in close proximity to the agonist, within the VFD, display significant probe dependence, and markedly increase the affinity of the orthosteric ligand. Several sweet taste receptor inhibitors have also been characterized. Functional studies reveal a complex relationship between different ligands. Whether the antagonist will be surmountable or insurmountable and will act competitively or non-competitively largely depends on the agonist being studied and the location of its interaction site on the receptor.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Regulação Alostérica , Sítio Alostérico , Animais , Sítios de Ligação , Humanos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais
9.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118689, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092308

RESUMO

The non-activating allosteric modulator AZ1729, specific for free fatty acid receptor 2 (FFAR2), transfers the orthosteric FFAR2 agonists propionate and the P2Y2R specific agonist ATP into activating ligands that trigger an assembly of the neutrophil superoxide generating NADPH-oxidase. The homologous priming effect on the propionate response and the heterologous receptor cross-talk sensitized ATP response mediated by AZ1729 are functional characteristics shared with Cmp58, another non-activating allosteric FFAR2 modulator. In addition, AZ1729 also turned Cmp58 into a potent activator of the superoxide generating neutrophil NADPH-oxidase, and in agreement with the allosteric modulation concept, the effect was reciprocal in that Cmp58 turned AZ1729 into a potent activating allosteric agonist. The activation signals down-stream of FFAR2 when stimulated by the two interdependent allosteric modulators were biased in that, unlike for orthosteric agonists, the two complementary modulators together triggered an activation of the NADPH-oxidase, but not any transient rise in the cytosolic concentration of free calcium ions (Ca2+). Furthermore, following AZ1729/Cmp58 activation, the signaling by the desensitized FFAR2s was functionally selective in that the orthosteric agonist propionate could still induce a transient rise in intracellular Ca2+. The novel neutrophil activation and receptor down-stream signaling pattern mediated by the two cross-sensitizing allosteric FFAR2 modulators represent a new regulatory mechanism that controls receptor signaling.


Assuntos
Benzamidas/farmacologia , Neutrófilos/metabolismo , Fenilbutiratos/farmacologia , Receptores de Superfície Celular/agonistas , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Benzamidas/química , Cálcio/metabolismo , Sinergismo Farmacológico , Humanos , Estrutura Molecular , NADPH Oxidases/metabolismo , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Fenilbutiratos/química , Propionatos/metabolismo , Receptores de Superfície Celular/química , Transdução de Sinais/efeitos dos fármacos
10.
Nature ; 579(7800): 609-614, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32040955

RESUMO

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle1-4. The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep5,6 and depression1-4,7-9. Despite their importance, few in vivo active MT1-selective ligands have been reported2,8,10-12, hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries.


Assuntos
Ritmo Circadiano/fisiologia , Ligantes , Receptores de Melatonina/agonistas , Receptores de Melatonina/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Escuridão , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Feminino , Humanos , Luz , Masculino , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/deficiência , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/deficiência , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Receptores de Melatonina/deficiência , Receptores de Melatonina/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/genética
11.
Handb Exp Pharmacol ; 260: 17-41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31768748

RESUMO

Pharmacology, the chemical control of physiology, emerged as an offshoot of physiology when the physiologists using chemicals to probe physiological systems became more interested in the probes than the systems. Pharmacologists were always, and in many ways still are, bound to study drugs in systems they do not fully understand. Under these circumstances, null methods were the main ways in which conclusions about biologically active molecules were made. However, as understanding of the basic mechanisms of cellular function and biochemical systems were elucidated, so too did the understanding of how drugs affected these systems. Over the past 20 years, new ideas have emerged in the field that have completely changed and revitalized it; these are described herein. It will be seen how null methods in isolated tissues gave way to, first biochemical radioligand binding studies, and then to a wide array of functional assay technologies that can measure the effects of molecules on drug targets. In addition, the introduction of molecular dynamics, the appreciation of the allosteric nature of receptors, protein X-ray crystal structures, genetic manipulations in the form of knock-out and knock-in systems and Designer Receptors Exclusively Activated by Designer Drugs have revolutionized pharmacology.


Assuntos
Desenho de Fármacos , Farmacologia/tendências , Receptores de Superfície Celular/fisiologia , Humanos
12.
J Pharmacol Exp Ther ; 371(2): 487-499, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492823

RESUMO

Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488) and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal antinociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion, yet retained the ability to reduce morphine-induced conditioned place preference in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when coadministered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine.


Assuntos
Analgesia/métodos , Sistemas de Liberação de Medicamentos/métodos , Morfinanos/administração & dosagem , Morfina/administração & dosagem , Medição da Dor/efeitos dos fármacos , Receptores Opioides mu/metabolismo , Compostos de Espiro/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/métodos , Distribuição Aleatória , Receptores Opioides kappa/administração & dosagem , Receptores Opioides mu/agonistas
13.
Cell Chem Biol ; 26(10): 1365-1379.e22, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422906

RESUMO

Polycomb-directed repression of gene expression is frequently misregulated in human diseases. A quantitative and target-specific cellular assay was utilized to discover the first potent positive allosteric modulator (PAM) peptidomimetic, UNC4976, of nucleic acid binding by CBX7, a chromodomain methyl-lysine reader of Polycomb repressive complex 1. The PAM activity of UNC4976 resulted in enhanced efficacy across three orthogonal cellular assays by simultaneously antagonizing H3K27me3-specific recruitment of CBX7 to target genes while increasing non-specific binding to DNA and RNA. PAM activity thereby reequilibrates PRC1 away from H3K27me3 target regions. Together, our discovery and characterization of UNC4976 not only revealed the most cellularly potent PRC1-specific chemical probe to date, but also uncovers a potential mechanism of Polycomb regulation with implications for non-histone lysine methylated interaction partners.


Assuntos
Descoberta de Drogas , Peptidomiméticos/farmacologia , Complexo Repressor Polycomb 1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Peptidomiméticos/química
15.
J Med Chem ; 62(16): 7557-7574, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31298539

RESUMO

G protein-coupled receptor 68 (GPR68) is an understudied orphan G protein-coupled receptor (GPCR). It is expressed most abundantly in the brain, potentially playing important roles in learning and memory. Pharmacological studies with GPR68 have been hindered by lack of chemical tools that can selectively modulate its activity. We previously reported the first small-molecule positive allosteric modulator (PAM), ogerin (1), and showed that 1 can potentiate proton activity at the GPR68-Gs pathway. Here, we report the first comprehensive structure-activity relationship (SAR) study on the scaffold of 1. Our lead compound resulted from this study, MS48107 (71), displayed 33-fold increased allosteric activity compared to 1. Compound 71 demonstrated high selectivity over closely related proton GPCRs and 48 common drug targets, and was bioavailable and brain-penetrant in mice. Thus, our SAR study has resulted in an improved GPR68 PAM for investigating the physiological and pathophysiological roles of GPR68 in vitro and in vivo.


Assuntos
Regulação Alostérica , Álcoois Benzílicos/farmacologia , Desenho de Fármacos , Prótons , Receptores Acoplados a Proteínas G/metabolismo , Triazinas/farmacologia , Animais , Álcoois Benzílicos/síntese química , Álcoois Benzílicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Camundongos , Estrutura Molecular , Ensaio Radioligante , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/farmacocinética
16.
J Recept Signal Transduct Res ; 39(2): 106-113, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31322035

RESUMO

Context: Drugs such as positive allosteric modulators (PAMs) produce complex behaviors when acting on tissues in different physiological contexts in vivo. Objective: This study describes the use of functional assays of varying receptor sensitivity to unveil the various behaviors of PAMs and thus quantify allosteric effect through system independent scales. Materials and methods: Muscarinic receptor activation with acetylcholine (ACh) was used to the demonstrate activity of the PAM agonist 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, Benzyl quinolone carboxylic acid (BQCA) in terms of direct agonism, potentiation of ACh affinity, and ACh efficacy. Concentration-response curves were fit to the functional allosteric model to yield indices of agonism (τB), effects on affinity (α cooperativity), and efficacy (ß cooperativity). Results: It is shown that a highly sensitive functional assay revealed the direct efficacy of BQCA as an agonist and relatively insensitive cells (produced by chemical alkylation of muscarinic receptor with phenoxybenzamine) revealed a positive allosteric effect of BQCA on ACh efficacy. A wide range of functional assay sensitivities produced a complex pattern of behavior for BQCA all of which was accurately quantified through the system-independent parameters of the functional allosteric model. Conclusions: The study of complex allosteric molecules in a range of functional assays of varying sensitivity allows the measurement of the complete array of activities of these molecules on receptors and also better predicts which will be seen with these in vivo where a range of tissue sensitivities is encountered.


Assuntos
Acetilcolina/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Agonistas Muscarínicos/química , Quinolinas/química , Receptor Muscarínico M1/química , Acetilcolina/agonistas , Regulação Alostérica/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Agonistas Muscarínicos/farmacologia , Fenoxibenzamina/química , Fenoxibenzamina/farmacologia , Quinolinas/farmacologia , Receptor Muscarínico M1/agonistas , Relação Estrutura-Atividade
17.
J Theor Biol ; 480: 23-33, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356763

RESUMO

This paper describes the behavior of binding and functional receptor systems where an antagonist of the receptor/G protein binding reaction is added as a blocker of agonist-induced receptor function. For agonist radioligands, the reduction of G protein receptor interaction leads to a possible change in the binding affinity of the agonist radioligand to the receptor. Reciprocally, the allosteric cooperativity between the agonist and the G protein binding site antagonist (quantified by the factor γB) affects the potency of the G protein antagonist modulator; this model presents the various profiles that would be expected for modulators that reduce (γB = 0.01), have no effect on (γB = 1) and increase (γB = 100) the affinity of the agonist for the receptor. It will be seen that modulators that increase the affinity of the receptor for the agonist are the most potent antagonists and may attain a profile of some special negative allosteric modulators referred to as PAM antagonists. In all cases, these modulators will be inverse agonists of constitutive receptor activity. This model presents a strategy for the discovery of PAM antagonists for therapeutic blockade of physiological signaling.


Assuntos
Proteínas de Ligação ao GTP/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
18.
Trends Pharmacol Sci ; 40(7): 529-539, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31109799

RESUMO

Through pharmacological procedures, indices of drug activity can be obtained that transcend the systems in which they are measured. If (i) affinity, (ii) efficacies, (iii) orthosteric versus allosteric interaction, and (iv) rate of receptor offset can be determined, activity can be predicted in all systems. This can yield more detailed profiles (fingerprints) of efficacy to better define the required activities of follow-up molecules should the original candidates fail in the clinic. The use of functional assays of varying sensitivity is a major tool in the lead optimization process and the observation of candidate molecule profiles in multiple functional assays can reveal all properties of candidate molecules. In this review, the different indices for agonists, antagonists, and allosteric modulators are defined while highlighting the application of functional assays in deriving these indices.


Assuntos
Modelos Biológicos , Farmacologia/métodos , Animais , Humanos , Farmacocinética , Farmacologia Clínica/métodos
19.
Pharmacol Rev ; 71(2): 267-315, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30914442

RESUMO

A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs. Although this is a fairly newly discovered phenomenon, theoretical and experimental data suggest that it is a ubiquitous behavior of ligands and receptors and to be expected. Biased signaling is simple to detect in vitro and there are numerous methods to quantify the effect with scales that can be used to optimize this activity in structure-activity medicinal chemistry studies. At present, the major hurdle in the application of this mechanism to therapeutics is the translation of in vitro bias to in vivo effect; this is because of the numerous factors that can modify measures of bias in natural physiologic systems. In spite of this, biased signaling still has the potential to justify revisiting of receptor targets previously thought to be intractable and also furnishes the means to pursue targets previously thought to be forbidden due to deleterious physiology (as these may be eliminated through biased signaling).


Assuntos
Descoberta de Drogas/métodos , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Química Farmacêutica/métodos , Desenho de Fármacos , Humanos , Ligantes , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade
20.
ACS Pharmacol Transl Sci ; 2(1): 9-17, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32219213

RESUMO

The unique ways in which pharmacological data compares to mathematical models are described. Examples show that insights into agonist action (prediction of agonism in vivo) and antagonist mechanism of action (orthosteric vs allosteric) can be gained that assist in the candidate selection process for new drugs in drug discovery and development efforts. In addition, the impact of component processes on complex physiological systems can be delineated, such as the effects of the hepatic system on whole body clearance in pharmacokinetics and prediction of drug-drug interactions. Finally, models are instrumental in the procurement of universal drug parameters that can be used in medicinal chemistry-based structure-activity relationships. The revitalization of these ideas under the banner of "Analytical Pharmacology" may serve to re-emphasize these concepts over qualitative description and lead to a better foundation for drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...